

A Lack of Biosafety Scholarship Hampers Biosafety Risk Management

- We lack data on how accidents occur in biological laboratories
 - Most Lab Acquired Infections cannot be associated with a particular accident
 - What drives most exposures/Loss Of Containment incidents?
 - Fine motor mistakes (tripping a pipette tip over a well)
 - Major motor mistakes (dropping a flask or rotor)
 - Protocol mistakes (choosing the wrong rotor tube for a centrifuge)
 - Protocol violations/ignorance (ignoring an alarm on a PAPR or BSC)

A Transformative Grant

- To start to address this gap, we received a grant from the Open Philanthropy Project to undertake critical research in biosafety
- There are three lines of research:

FRYPHON

- Conduct failure analysis to determine how laboratory accidents generate hazards
- **Conduct human reliability research** to determine how/how frequently researchers create incidents
- **Gather data on innovations in biosafety** to learn from the measures that have already been implemented but are not widely known
- At Gryphon, this work was conducted along with Kelly Kim and Henry Wyneken

FAILURE ANALYSIS AND SOURCE TERMS: Characterize the hazard created by an accident Understand probabilities and mechanisms

This work was done in the FLOW Lab in the Dept of Mechanical Engineering, UC Berkeley by: Sungkyu Kim Benoit Lebon Chelsea Preble Simo A. Mäkiharju, Principle Investigator

These physical science researchers have never before considered laboratory safety as an area of research

Experimental Set Up: Repeatable Accident INitiator (RAIN)

- Real drops are highly variable, must control many parameters to investigate one factor at a time
- We created RAIN:

- Impact speed controlled by a pulley system driven by a linear drive
- Impact angle controlled by a 'Forklift-like' container holder
- Air-tight chamber with anti-static wall and inlet air filtered
- High-speed Imaging (Phantom v1210—70k+ FPS) & Digital In-Line Holography

Images Captured During Simulated Laboratory Accidents

- At a visceral level, these images show how hazardous common laboratory accidents can be
- They are very convincing pieces of data that demonstrate why respiratory protection may be valuable even when not performing aerosol generating procedures

Images Captured During Simulated Laboratory Accidents

- At a visceral level, these images show how hazardous common laboratory accidents can be
- They are very convincing pieces of data that demonstrate why respiratory protection may be valuable even when not performing aerosol generating procedures

Flask Failures

20 drops:

- 1. 10 x distilled water, 100 mL
- 2. 10 x fluorescein solution, 100 mL

Result:

11

- 5/20 flasks failed with visible leakage
- 2/10 flasks spilled small droplets only detectable under UV light
- 1/20 flasks had a crack
- Some flasks have shown nearly undetectable leaks.

- In this research thrust, we set out to better characterize the hazard created when common labware is dropped
 - Due to the incredible complexity of the problem, we have not generated enough data to accomplish this goal (yet)
 - We have created a methodology and an experimental set up that will enable us to generate these data with statistically significant sample sizes
 - We have begun to understand influence of fluid properties on hazard (viscosity, surface tension)
- However, our observations have suggested that vibrations established upon impact are critical for changing a splash into an aerosol

Engineering Inherently Safer Labware

- Adding mass by adding epoxy to the Petri dish significantly changed the resonance of the plastic, and thus the aerosols produced.
 - Data on large (50 micron and larger) droplets is significant
 - Data on aerosols in the respirable range is not reliably measured by this method
 - Awaiting holography data

14

FAILURE ANALYSIS AND SOURCE TERMS: CHARACTERIZE THE HAZARD CREATED BY AN ACCIDENT UNDERSTAND PROBABILITIES AND MECHANISMS

This work was done in the laboratory of Rebecca Roberts at Ursinus College

E-15

B-15

D-15

A-15

C-15

These experiments are simple yet fill critical data gaps in biosafety These experiments are suitable to conduct at small, liberal arts colleges These researchers had never before considered biosafety research

Conduct Failure Analysis

0.01 (0.01)

0.005 (0.005)

0.012 (0.012)

Summary of

0.18 (0.14)

0.11 (0.15)

0.25 (0.22)

How frequently do centrifuge • tubes leak when inverted?

GRYPHON CIENTIFIC

- Filled thousands of centrifuge tubes with tracer and checked for leaks using a wipe
- Determining modes of failure
- Leakage when tube is closed
 - Leakage onto threads of tube when opened
- 15ml conical centrifuge tubes leak (TTL) 0.5-1.5% of the time
- 50ml conical centrifuge tubes leak (TTL) 0.2-0.8% of the time
- Liquid gets on the threads of either tube 11-26% of the time
- Brand is not a statistically significant factor in leak rate
- Extra ring in cap does not affect leak rate

GRYPHON

	Y
Leaks from (Conical Tube

EMI	M with (Una	ıdj	usted Av	/erages)	
15 mL				50 mL	
P(TTL)	P(Thread)		Brand	P(TTL)	P(Thread)
0.015 (0.015)	0.26 (0.21)		E-50	0.008 (0.021)	0.12 (0.14)
0.004 (0.004)	0.21 (0.17)		D-50	0.006 (0.014)	0.13 (0.14)

0.006 (0.014) 0.21 (0.17) D-50

0.002 (0.006)

0.003 (0.008)

0.001 (0.002)

C-50

B-50

A-50

0.11 (0.12)

0.20 (0.17)

0.16 (0.12)

Error Rate in Volunteer Studies Error rate was at least 4.5 spills per 1,000 manipulations and most likely 6.5 per 1,000 Importantly, these data validate the use of volunteers using simulants as a good proxy for real staff working with samples they think are pathogenic in their normal work environment Recall that the rate in clinical labs was 1-15 spills per 1,000 depending on location In the GoF Risk/Benefit Assessment, analogizing from data in other industries, we estimated the fine motor skill error rate was estimated to be 0.05-5 spills per 1,000 manipulations Overlaps with but slightly exceeds high end of range **Replicates** Min Error/ Modeled error/ 1,000 manips. .ooo manin 1,000 manips A 6.1 36,000 4.6 15.5 В 16,000 24.6 7.45.3 Combined 52,000 4.8 6.5 18.3 GRYPHON IENTIFIC

Effect of a Multi-Channel Pipette on Error Rate

• Even inexperienced users make fewer errors when filling a 96-well plate with a multi-channel pipette than with a single-channel

Location of Contamination

• We also tracked where contamination landed

GRYPHON

SCIENTIFIC

- Most frequently found on the plate and around it
- Almost all contamination was found near the pipetting error
- Some contamination was likely due to transfer from contaminated gloves

ntaminat	ion	
Location	% of Plates w/ Contam	% of total Contam Spots
96 well plate	67	27
Bench pad	65	39
Waste container	35	16
Gloves	22	6
Micropipette	20	3
Well Plate Lid	13	2
Tip box	9	4
Interior BSC surface	6	1
Exterior BSC surface	2	0
Goggles	2	0
Lab coat	2	1
Reagent reservoir	2	0
Volunteer Hands	2	0

Conduct Human Reliability Research

- Working with CSU we also collected observational data
- TAs and instructors in the intro microbiology lab course were given a data collection instrument to guide them on which incidents we wanted recorded
- A total of 4,500 student-lab-hours were observed
- The following incidents RATES were observed
 - 17 incidents of microbial stain on the body per 1,000 lab hours
 - 3.5 major motor mistakes per 1,000 lab hours (half of which required a spill response)
 - 39 incidents of gloves thrown in regular waste per 1,000 lab hours

EXPLOITING EXISTING DATA:

Much of the data in this section are from the U of Chicago: Sa-Lin Bernstein Jay Schroeder Joe Kanabrocki

Best Practices and Innovations in Biosafety

- To identify potential innovations and best practices we held discussions with more than 100 thought leaders in biorisk mgt
 - In the past, we've found that those with new practices didn't know they were being innovative
 - Many folks we contacted tried to suggest they didn't have anything worth talking about
 - To draw out innovations, we focused on the process of biorisk management
 - How did they manage risks that they encountered while assessing risks

• More than 500 practices were identified

- We discussed these practices at two workshops
 - One in Washington DC and one in Malta (focused on low-resource settings)
- We are in the process of writing up our findings in a free publication

Developing an International Biorisk Research Agenda

- Gryphon received a grant from the US Dept of State to help develop an international biorisk research agenda over the next three years
 - Soliciting input in discussions and workshops from researchers and biosafety professionals in countries of all resource levels
 - Seeking to characterize key knowledge gaps in biorisk management and identify research needs
- The final year will be dedicated to review by researchers, policy makers and regulators to guide the implementation of new research projects to:
 - Inform biorisk management
 - Strengthen international networks
 - Foster sustainable global expertise

U.S. DEPARTMENT of STATE

We will work closely with the RAV3N network as they pursue a common goal with funding from the USDA

32

Thank you

- Thanks again to Open Philanthropy for funding all of the work described in this talk
- We hope the government will begin to fund follow on research
- Please reach out to me if you are interested in participating in the development of the biosafety research agenda
- Contact me at Rocco@gryphonscientific.com

